
CS 1112 Introduction to
Computing Using MATLAB

Instructor: Dominic Diaz

Website:
https://www.cs.cornell.edu/courses/cs111
2/2022fa/

Today: sorting/efficiency

https://www.cs.cornell.edu/courses/cs1112/2022fa/
https://www.cs.cornell.edu/courses/cs1112/2022fa/

Agenda and announcements
● Last time

○ Merge sort
○ Binary search

● Today
○ An algorithm for sorting
○ Efficiency analysis

● Announcements
○ Project 6 due Dec 5th
○ Code ‘til you drop session on Dec 14th
○ Final exam on Thursday, December 15th from 2 - 4:30 PM in Olin 155

■ Check your “final exam time and location” CMS assignment if you have an
SDS letter. If you have 3+ finals in a 24 hour period, submit a regrade request
and we can reschedule this exam.

Searching is easier in a
sorted list

Last time: binary search repeatedly
halved our search space.

First we need to sort our list though.

5 4 9 2 1

1 2 4 5 9

There are many algorithms for sorting

● Merge sort (discussed last lecture)
● Selection sort (exercise yesterday)
● Insertion sort (discussed this lecture)
● Bubble sort (read insight section 8.2)
● Quick sort (a variant used by MATLAB’s built-in sort function)

● Each has advantages and disadvantages. Some algorithms are faster
(time efficient) while others are memory-efficient.

The insertion process

Given a sorted array v, insert a number x such that the result is sorted.

2 3 8 9

2 3 6 8 9

6

sorted

Still sorted

Find spot to place 6 which
ensures that the array is still
sorted

Insertion process

2 3 8 9 6 Append 6 to the end of the sorted array

2 3 8 6 9 Since 9 > 6, swap

2 3 6 8 9 Since 8 > 6, swap

2 3 6 8 9 Since 3 < 6, stop swapping

Array is sorted once again!

Another insertion
2 3 6 8 9 Insert -1

2 3 6 8 9 -1

2 3 6 8 -1 9

2 3 6 -1 8 9

2 3 -1 6 8 9

2 -1 3 6 8 9

-1 2 3 6 8 9

Append -1 to the end

Since 9 > -1, swap

Since 8 > -1, swap

Since 6 > -1, swap

Since 3 > -1, swap

Since 2 > -1, swap

Sorted again, yay!

Sort vector x using the Insertion Sort algorithm

5 7 -1 2 4

To sort using insertion sort, need to start with a sorted subvector. How do you find one?

Length 1 vector is always sorted

Append 7 and swap until sorted again

Append -1 and swap until sorted again

5 7

5

5 7 -1

Append 2 and swap until sorted again

Append 4 and swap until sorted again

-1 5 7 2

-1 2 5 7 4

Take a second to
think about when
insertion sort is
most efficient and
least efficient. What
should the starting
vector look like?

How much “work” is insertion sort?

● In the worst case, make k comparisons to insert an
element into a sorted array of k elements. To sort an
array of length N, how many comparisons do we
need to do?

1 + 2 + 3 + … + (N-1) = N(N-1)/2

● In the best case, make 1 comparison after
inserting each new number. To sort an array of
length N, how many comparisons do we need to
do?

1 + 1 + 1 + … + 1 = N-1

10 7 5 3 1 -10

-1 4 7 8 9 10

When talking about the time complexity of an algorithm, We take the number of computations (or
comparisons) in the worst case and get rid of constants: O(N^2).

This big O corresponds to the limiting behavior… what the function tends to as N gets very large.

Efficiency considerations

● Worst case, best case, average case number of calculations (or comparisons)
● Memory use and access

○ For example, in insertion sort we can create an extra vector to store the “sorted so far” vector

5 -2 0 6 7 2Original vector

-2 0 5 6Sorted so far vector

○ We could sort the vector “in place” as well (this would not incur extra memory costs)

5 -2 0 6 7 2

-2 5 0 6 7 2

-2 0 5 6 7 2

function x = insertSortInplace(x)
% Sort vector x in ascending order using Insertion sort
n = length(x);
for i = 1:n-1
 % Sort x(1:i+1) given that x(1:i) is sorted
 j = i;
 need2swap = x(j+1) < x(j);
 while need2swap
 temp = x(j);
 x(j) = x(j+1);
 x(j+1) = temp;
 j = j-1;
 need2swap = j>0 && x(j+1)<x(j);
 end
end

function x = insertSortInplace(x)
% Sort vector x in ascending order using Insertion sort
n = length(x);
for i = 1:n-1
 % Sort x(1:i+1) given that x(1:i) is sorted
 j = i;
 need2swap = x(j+1) < x(j);
 while need2swap
 temp = x(j);
 x(j) = x(j+1);
 x(j+1) = temp;
 j = j-1;
 need2swap = j>0 && x(j+1)<x(j);
 end
end

Efficiency:

Time complexity: In the worst case, do
about n*(n-1)/2 comparisons so the time
complexity is O(n^2).

Space complexity: In the worst case, we
need 5 extra spaces of memory.
Constants become 1 so we say the
space complexity is O(1).

Because it does not depend on n.

What is the time and space complexity of this function if
the input A is a matrix of size nxn.

function B = pos(A)

B = zeros(size(A));
[nr, nc] = size(A);
for i = 1:nr
 for j = 1:nc
 if A(i,j) < 0
 B(i,j) = A(i,j)*(-1);
 else
 B(i,j) = A(i,j);
 end
 end
end

end

Time: In the code, we’re doing n^2 things (n^2
comparisons) → O(n^2)

Space: We’re creating n^2 + 4 extra things in
memory (B, nr, nc, i, and j) → O(n^2).

When doing a*n^2 + b*n + c computations or
creating a*n^2 + b*n + c extra things in memory,
the complexity is O(n^2).

Get rid of constants and lower order terms.

Extra slide on complexity
When your code takes an input of length n, how many computations (or
comparisons) does it do? How much extra memory space does your code require
(other than the length n input)?

Steps:

1. Compute the number of computations (or extra spaces of memory) to get a
function in terms of n. For example, 10*n^3 + n + 10.

2. Constants in this function become 1 and we throw away lower order terms. In
the example above, we would say the time (or space) complexity is O(n^3).
a. If we do a constant number of computations or only constant memory space is used (constant

means that these numbers don’t grow with n), we say the time (or space) complexity is O(1).

What does this “Big-O” mean? It means “what is the limiting behavior of this function?”. When we take the
limit as n gets large what term dominates? We don’t care about the constant but we care about degree of
the largest term. This is a very useful tool when comparing algorithms.

How can we use complexity to compare algorithms?

Consider the two following codes that do the exact same thing.

% Given some 2D array A of size nxn
for i = 1:size(A,1)

for j = 1:size(A,2)
if i == 1

A(i,j) = Inf;
end

end
end

% Given some 2D array A of size nxn
for j = 1:size(A,2)

A(1,j) = Inf;
end

The left code does n^2 comparisons plus n variable assignments. So we would say the time complexity
of the left code is O(n^2). The right code does n assignments. So we would say the time complexity of
the right code is O(n). The right code is much faster and we are able to use this complexity analysis to
compare these algorithms that do the same thing.

Check out this link for a comparison of different sorting algorithms:
https://www.toptal.com/developers/sorting-algorithms

What do I need to know in terms of sorting and searching?

● Should be able to implement a sorting algorithm from pseudocode (like this
week’s exercise)

● Should be able to analyze the efficiency of a sorting algorithm (time and
space complexity in the worst case scenario).

○ Merge sort is a little too difficult to analyze for this course
○ Practice with insertion sort from ex 14
○ Practice with bubble sort from the textbook

● Should be able to complete an incomplete binary search code.

What we learned in this course

● Develop and implement algorithms for solving problems
● Develop programming skills

○ Design, implement, document (comments), test, and debug
● Programming tool bag

○ Functions for reducing redundancy
○ Control flow (if-else, loops)
○ Data structures, types
○ Graphics
○ File handling

● Applications and concepts
○ Image processing
○ Object-oriented programming
○ Sorting and searching
○ Randomness
○ Simulation, sensitivity analysis
○ Computational efficiency

Where to go from here?
● Learn another programming language
● Explore cool/impactful applications!

https://openai.com/blog/emergent-tool-use/

https://www.appliedscienceint.com/structural-engineering-services/

Computing gives us insight into a problem

● We build models and write programs so that we can “play” with the models
and parameters

● Good programs…
○ Have been thoroughly tested
○ Are cleanly organized
○ Are well-documented
○ Use appropriate data structures and algorithms
○ Are efficient in time and memory

Best wishes and good luck
with your exams!!

